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Abstract—With the rise of information and sensor technologies, 

sensors play an increasingly significant role in modern 

production systems. The reliability, safety, and productivity of a 

production system may largely depend on sensor performance. 

However, there has been a lack of unsupervised methods for 

sensor anomaly identification under the environment of 

industrial big data. This paper proposed an approach to detect 

sensor failure for industrial big data in an unsupervised manner 

with the help of random forest and long short-term memory 

neural networks. The data used in this research are time-series 

data collected from a gas turbine with 107 sensors. The dataset 

includes sensor data with 700,000 timestamps in recent years. In 

this research, random forest regression was first applied to 

identify the relationship among those sensor values. Afterward, a 

long short-term memory network is established to predict the 

values of the target sensor at the current time step. Then, sensor 

failures can be identified according to the difference between the 

predicted and actual sensor values. The conducted experiments 

show promising results that the approach successfully identifies 

the sensor failure in a completely unsupervised manner. 
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I.  INTRODUCTION 

Modern production systems are increasingly becoming 
more complex and di-verse to fulfill various production 
requirements. For industrial equipment, various sensors with 
ever-higher accuracy and reliability are required for condition 
monitoring [1]. The data collected from those sensors are not 
only significant to identify the state of production and 
surrounding environment, but also vital for operation 
management and decision making [2]. Simultaneously, sensor 
failure could significantly compromise the performance and 
safety of a system and lead to damage to property, environment, 
and even casualties. For this reason, sensor failure 
identification is essential and vital for industrial equipment.  

In this research, our motivation is to help an energy 
company to find a solution for sensor failure identification. The 
company maintains a lot of large-scale machinery with 
complex networks of sensors. Those sensors are pivotal in 
deter-mining the machinery's health and maintenance schedule. 
The company recently noticed that they are conducting 

unnecessary maintenance caused by sensor failures. The 
unnecessary maintenance of large-scale machinery could be 
both costly and wasteful. Thus, the company wants to find a 
solution to detect potential sensor failure and verify the results 
of sensor warning. The data provided by the company and used 
during our research are collected from a gas turbine. The data 
includes a record of 107 sensors with 700,000 timestamps in 
recent years.  

One of the challenges in this research is that data collected 
from multiple sensors hold different physical meanings and 
vary in different scales, which makes the acquisition of relevant 
information from data a difficult task. Actually, this challenge 
is also a common dilemma in many practical applications, 
especially in the scenarios that hundreds of parameters are 
collected together and formed into long time-series [3]. 
Another challenge is that sensor failures are usually not 
recorded during production, which means a lack of labels that 
could indicate the ground truth of the collected data. Thus, the 
solution for sensor failure identification shall also have the 
capability to deal with the unsupervised environment in this 
case. 

To address the above challenges, this paper proposes an 
unsupervised method to identify sensor failure based on the 
combination of random forest regression (RFR) and long short-
term memory neural network (LSTM). The proposed approach, 
RFR-LSTM, has the capability to identify sensor failure for 
industrial big time-series data in a completely unsupervised 
manner.  

The rest of this paper is organized as follows: Section 2 
explains the theoretical background, which includes feature 
importance, RFR, and LSTM. Section 3 details the proposed 
RFR-LSTM method for sensor failure identification. Section 4 
illustrates the experiments conducted in this work together with 
the numerical results and discussion. Conclusion and future 
work are summarized in the last section of this paper. 

II. THEORETICAL BACKGROUND 

A. Feature importance 

As mentioned above, one challenge in this research is to 
acquire relevant information from the available data. To be 



 

more specific, we need to discover the relationship between the 
data collected from 107 sensors and identify which sensors 
could be used to verify each other. The target machinery has an 
abundance of sensors located over a relatively large area. It, 
therefore, stands to reason that not all sensors will be useful in 
predicting the values of a sensor x (where x is any arbitrary 
sensor value). Therefore, to be able to verify a sensor value x, 
we need to identify which other sensor values are required. To 
achieve this purpose, we introduce the concept of feature 
importance in our research. The feature importance is defined 
as “discriminative power in distinguishing a target of interest 
from other individuals [4]." Feature importance, as the name 
implies, represents the importance of a feature y in predicting 
feature x. If we change the order of the data for feature y, the 
prediction error will increase for feature x. Feature importance 
can be used to describe the relationship between each pair of 
parameters in our database. 

B. Random forest regression (RFR) 

One of the most popular methods to calculate feature 
importance methods is random forest. The method can be used 
for both classification and regression. The name, random forest, 
comes from the algorithm using a forest of decision trees. 
Random forest uses a modified version of bootstrap 
aggregation, also known as Bagging. It can be used to reduce 
the variance, in cases where the variance is high, which is the 
case with decision trees [5]. Bagging, as the term suggests, is 
the process of placing sub-samples of the data into bags with 
replacement. In order to avoid overfitting, random forest 
reduces the correlation between the sub-models as much as 
possible. Rather than allowing the bagging to happen from the 
entire dataset, random forest's improved technique only allows 
the bagging to happen from a randomly chosen subset of the 
data, that is selected at each time-step.  

RFR works by taking the average real-valued output from 
the decision trees. The importance score of each feature can be 
calculated through recording the improvement in the split-
criterion at each split and in every tree [6]. For this rea-son, as 
proposed in [7], RFR can also be applied as a means to 
distinguish relevant from irrelevant variables in variable 
selection approaches. It means that by calculating the feature 
importance, one may be able to determine which features are 
important in predicting each other.  

In our case, the original size of features is 107 parameters, 
which are collected from multiple sensors mounted on different 
areas. We consider that sensors located closely or indicating 
similar physical meanings are relevant to each other. However, 
the relationship is difficult to be identified from the physical 
model directly. For this reason, we introduced RFR here to 
acquire the feature importance of all the 107 parameters to each 
sensor. 

C. Long short-term memory network (LSTM) 

LSTM is a special type of recurrent neural network (RNN) 
proposed in 1997 to address the problem of insufficient, 
decaying error backflow in RNN training [8]. In LSTM neural 
networks, memory cells are employed as independent 
activation functions and identity functions with fixed weights, 
which are connected to themselves [9]. Compared with 

traditional RNN, LSTM neural network applies memory cells 
with forget gates to establish connections between inputs and 
out-puts [10]. These forget gates could effectively keep 
information in the cell states. For this reason, LSTM has the 
capability to capture nonlinear dynamics from long time-series 
data. More detailed description of the theory to leverage LSTM 
for time-series sensor data prediction can be found in our 
previous work [9].  

III. SENSOR FAILURE IDENTIFICATION BASED ON RFR-

LSTM 

As mentioned in the introduction, the main challenge in our 
research is to identify which sensors are relevant and can 
subsequently be applied to validate each other. To resolve this 
issue, we applied RFR to acquire the feature importance of all 
the sensors first. Then, we select the top 10 relevant sensor 
values as the key indicators to verify the target sensor. The 
main idea is to predict the current value of each sensor through 
an LSTM neural network, in which the inputs are the values 
from the ten most relevant sensor values, and the output are the 
predicted values of the target sensor. The difference between 
the actual and predicted sensor value can be leveraged to 
identify the potential sensor failure. Fig. 1 illustrates the 
process of the proposed method for sensor failure identification. 

Figure 1.  The process of sensor failure identification based on RFR-LSTM 

IV. EXPERIMENTS AND NUMERICAL RESULTS 

A. Dataset preparation 

During the experiment, to improve the performance of data-
driven model and avoid potential inconvenience, we first 
applied standard normalization to adjust the sensor data 
measured on different scales to a notionally common scale, and 
formatted them into sequences with three steps in each sample. 
As shown in Table 1, S1(t) represents the current value of 
Sensor 1, while S1(t-1) and S1(t-2) mean the value of Sensor 1 
in the previous one and two timestamps, respectively. The 
same goes for other sensors.  

During the experiment, we randomly selected 90% of the 
samples (630,000 samples) as training data. The rest 10% of 
samples (70,000 samples) are used to test the prediction result. 



 

 

 

TABLE I.  SENSOR DATA AFTER NORMALIZATION AND 

REORGANIZATION 

S1(t-2) S2(t-2) S1(t-1) S2(t-1) S1(t) S2(t) 

0.15 0.49 0.2 0.5 0.21 0.52 

0.2 0.5 0.21 0.52 0.21 0.48 

0.21 0.52 0.21 0.48 0.2 0.5 

B. Training process 

During the training process, the applied random forest is 
composed of 100 decision trees. We consider the number of 
trees is large enough for accuracy with acceptable 
computational complexity since the total number of sensors in 
the database is 107. We selected mean squared error (MSE) as 
the criterion for evaluating the quality of a split during the RFR 
training process due to its broad applicability [11]. The selected 
criterion can help to calculate the importance score of each 
sensor. We consider the top 10 features with the highest 
importance as the relevant sensor values and will subsequently 
use them to predict the value of the target sensor through 
LSTM. Table 2 shows the selected parameters for RFR training. 

TABLE II.  PARAMETERS APPLIED FOR THE TRAINING OF RANDOM 

FOREST REGRESSION 

Training parameters Values 

Measuring criterion  Mean Squared Error 

Number of decision trees 100 

Number of features chosen 10 highest importance 

After the relevant sensors are identified through RFR, we 
applied LSTM to predict the value of the target sensor. The 
applied LSTM neural network in our re-search is composed of 
50 neurons, and one fully connected layer in the output for 
prediction. Mean absolute error and Adam are selected as the 
loss function and optimizer with the learning rate as 0.001. 

C. Numerical results and discussion 

Fig. 2 shows the training loss with epoch for feature 
importance identification during RFR training. The training 
process converges around the 200th epoch, with the Mean 
Square Error (MSE) dropping to 0.0008.  

Fig. 3 illustrates the mean absolute percentage error (MAPE) 
with epoch during LSTM training process. The training error 
after 200 epochs around 0.3%, which is acceptable as the 
prediction error for sensor failure identification. 

 

Figure 2.  Loss with epoch during RFR training 

Figure 3.  Mean absolute percentage error of LSTM training for prediction 

Figure 4.  Identified sensor failures according to the difference between the 

predicted and actual sen-sor values 

Fig. 4 shows the final testing result of the training LSTM 
neural network. After LSTM outputs the predicted sensor value, 
the difference between the predicted and actual sensor values 
can be leveraged to identify potential sensor failures. As shown 
in Figure 4, we can notice that the target sensor changes 



gradually and smoothly during most of the sampling time. We 
also find 12 singular points (la-belled as 1-12 in Figure 4) in 
the testing samples, in which 3 (labelled as 1, 2, and 11 in 
Figure 4) of the singular points can be predicted by the 
proposed RFR-LSTM method. The trained data-driven model 
is established to map the rule of how the target sensor changes 
with the other relevant sensors instead of the equipment. Thus, 
we consider these three singular points may indicate potential 
failures or anomaly of the equipment since both the actual and 
predicted sensor values vary differently from normal working 
conditions. Besides, we consider the rest 9 singular points (3-
10, and 12) are caused by sensor failures due to the large 
difference between the predicted and actual sensor values, 
which means the tar-get sensor is changing irregularly and 
inconsistent with other sensors. However, due to the lack of 
expert or historical data with labels, it is difficult to validate the 
proposed method and its predication results quantitatively, 
which might be the main limitation of this study. 

V. CONCLUSION AND FUTURE WORK 

This paper proposed a novel approach to detect sensor 
failure in a completely unsupervised manner for industrial big 
time-series data. The proposed RFR-LSTM method can 
identify the relationship among sensors and subsequently 
predict sensor values through other relevant sensors. By 
comparing the difference between the predicted and actual 
sensor values, sensor failures can be identified. The industry 
data applied in our research is collected without labels, which 
makes it challenging to validate the accuracy in the experiment. 
Future work may focus on the validation of the proposed 
method in labeled industry data or experimental data. 
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